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Long-range interactions generated by random Lévy flights: Spin-flip and spin-exchange kinetic
Ising model in two dimensions
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A d =2 dimensional kinetic Ising model that evolves by a combination of spin flips and spin exchanges
is investigated. The spin flips satisfy detailed balance for the equilibrium state of the Ising model at tem-
perature T while the spin exchanges are random Lévy flights of dimension o =1.5. Our Monte Carlo
(MC) simulations show that the steady state of this system displays a second-order phase transition as T'
is lowered. Comparing the critical fluctuations of the magnetization to those of an Ising model in which
the interaction decays with distance as »r ~*°, we find that, within the resolution of the MC data, the crit-
ical exponents and the scaling functions of the two systems coincide. We argue that this coincidence in-
dicates that a recent conjecture about the random Lévy flights generating long-range interaction of the

form Vg(r)~r=97°

PACS number(s): 05.50.+q, 05.70.Ln, 64.60.—i

I. INTRODUCTION

It has been suggested recently [1] that the effective in-
teractions generated by a dynamical process can be de-
duced by examining the phase transitions occurring in
the steady state of the system. The method is based on an
extension of the universality hypothesis to nonequilibri-
um states. For an equilibrium system, universality means
that the scaling properties near a critical point are deter-
mined by (i) the dimensionality of the system, (ii) the sym-
metry of the order parameter, and (iii) the range of in-
teractions. Thus knowing the dimensionality and the
symmetry, a measurement of the critical exponents yields
information about the dominant interactions. Assuming
that universality applies to non-equilibrium critical
points as well, the critical properties of a nonequilibrium
system provide us with the effective interactions.

The above line of argument has been used [1-3] to
study effective interactions in a kinetic Ising model [4]
that evolves by a combination of spin flips (Glauber dy-
namics [5]) and spin exchanges (Kawasaki dynamics [6]).
The spin flips are produced by a heat bath of temperature
T, i.e., their rates satisfy detailed balance for the equilib-
rium state of the Ising model at temperature 7. Simul-
taneously with spin flips, random (7 = « ) spin exchanges
take place. If the spin exchanges are between nearest-
neighbor sites and their rate is significantly smaller than
the rate of spin flips, then there is no rigorous evidence of
ordering transition in d =1 dimension [4,7], and the
nonequilibrium ordering in d =2 is in general of Ising
type [7]. The conclusion one may draw from the above
observations is that although the infrequent nearest-
neighbor exchanges may generate further-neighbor cou-
plings, they do not change the short-range, ferromagnetic
nature of the dominant interactions. This conclusion is
in agreement with rather general renormalization-group
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is valid not only in the spherical limit and in d =1 but also in d =2.

arguments [8] and similar conclusions about the ir-
relevance of small nonequilibrium perturbation can be
drawn for a number of kinetic Ising models with a variety
of competing dynamics [9-11]. Note, however, that
some exceptions to our statement above have been re-
ported. It remains to understand how to match the ob-
servation of both non-Ising critical behavior, and ap-
parent ordering for d =1 in some related systems [12,13]
with the more general picture presented here.

A different situation occurs when the random ex-
changes of spins are of infinite range [2,3]. In that case,
ferromagnetic ordering occurs even in d =1, and the crit-
ical magnetization fluctuations are indistinguishable from
those of an equilibrium Ising model with infinite-range in-
teractions. Thus one may conclude that the long-range
random exchanges transform the nearest-neighbor fer-
romagnetic couplings into infinite-range interactions.
This conclusion is supported by studies of the d =2 mod-
el where the equilibrium Ising transition, that is present
without the spin exchanges, becomes a mean-field transi-
tion as soon as the rate of spin exchanges is different from
zero. Further support for the above conclusion comes
from studies of such details as the crossover between the
equilibrium Ising and the nonequilibrium mean-field be-
havior. The crossover exponent found in the MC simula-
tions [3] is equal to the exponent describing the crossover
between short- and infinite-range Ising behavior.

In between the short- and infinite-range regime, there
are interactions which decay with distance as a power
law. The generation of those interactions can again be in-
vestigated since ferromagnetic interactions of the form
r~477 produce a critical behavior that is distinct from
both the mean-field and the short-range limit provided
d /2 <o <2—mn where 7 is the correlation exponent in the
short-range system [14]. A recent study indicates [1] that
power-law interactions can be generated if local dynamics
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(such as spin flips) that satisfies detailed balance for a
short-range Hamiltonian is coupled to 7= o anomalous
diffusion (Lévy-flight [15] exchanges of spins). More pre-
cisely, if the dimension of the Lévy flights producing the
exchanges of spins is 0 <o <2 then the effective interac-
tion is of the form

Veg(r)~r=477 . (1)

This result has been shown to be valid both for a d =1 ki-
netic Ising model and for the spherical limit of a time-
dependent, n component Landau-Ginzburg model that is
constructed as a combination of models A and B of criti-
cal dynamics [16].

The result (1) may be rather general since it can be de-
rived [1] by assuming that, in the long-wavelength limit,
the noise associated with a conserved dynamics (Lévy-
flight exchanges) is negligible compared to the noise that
is associated with a nonconserved dynamics (spin flips).
Although this assumption is valid for fluctuations around
an equilibrium state, nonequilibrium steady states are
known to display unexpected features. Thus the generali-
ty of (1) remains to be tested and, in the present paper, we
test it for a one-component, d =2 system. More
specifically, we use MC methods to study a d =2 spin-flip
and spin-exchange kinetic Ising model in which the spin
exchanges take place by Lévy flights of dimension
o=1.5. Our result is that the effective interactions gen-
erated in the system can again be described by the expres-
sion (1).

II. THE MODEL

Consider a kinetic Ising model in which stochastic Is-
ing variables s, =1 occupy the sites of an L X L period-
ic square lattice. The dynamics consists of flips and ex-
changes of spins with the two processes occurring in-
dependently. The spin-flip rate at site n is given by the
expression [3,5]

wil = 1 [1 —sptanh [KZS,,H
Tl ]

] , )

where 7, just sets the time scale, K controls the tempera-
ture T of the spin-flip heat bath, and the sum is over the
nearest-neighbor sites of n. The spin flips alone would
drive the system to the equilibrium state of the d =2 Is-
ing model at temperature 7 with the nearest-neighbor
coupling J related to K through K =J /kT.

The exchanges of spins take place between sites n and
n’ that are either in the same row or in the same column.
The rate of exchanges is given by
) 4

m——, (3)
72|n—n'|l+a

n,n

where 4 =232 ,i !7?. In the exchanges described by
wif},,, the spins move randomly either in the vertical or
horizontal direction, and the probability of moving a dis-
tance / is proportional to ! ~!7?. This variable-step ran-
dom walk is called Lévy flight [15] of dimension o. Note
that the exchanges are independent of energy, thus they
can be viewed as a process generated by a contact to a

T = o heat bath.

We choose to investigate the case of Lévy-flight ex-
changes of dimension o=1.5. This choice is somewhat
arbitrary since the validity of Eq. (1) can be tested any-
where in the d/2=1<0 <2—n=1.75 range where the
universal characteristics of the phase transition depend
on the exponent of the power-law interaction [14]. The
motivation for choosing oc=1.5 is to avoid crossover
effects that may hamper numerical analysis near o =1
(crossover to mean-field behavior) and near o=1.75
(crossover to short-range behavior).

The description of the flip-and-exchange model is
completed by noting that the frequency of spin-flip at-
tempts was equal to the frequency of spin exchanges
(7y=m,) in the simulations. The ratio 7,/7, is expected
to be an irrelevant variable wunless 7,/7,—0 or
7,/T,— . In those limits one expects crossovers to
short-range or mean-field behavior, respectively.

The test of the validity of (1) means comparing the crit-
ical properties of the flip-and-exchange model to those of
the equilibrium Ising model that has a long-range Hamil-
tonian of the form

H= z']n,n'snsn’ s (4)

n,n’

where n and n’ are on the sites of an L XL periodic
square lattice and
Jo

Jon = m . ) (5)
The critical exponents for this model have been calculat-
ed [14] by renormalization-group methods with the re-
sults given as power series in 6=20 —d >0 (052, fixed)
or Ac=0—d/2>0 (d fixed). The exponents we shall
need below for comparison with the flip-and-exchange
model are the correlation length exponent v and the sus-
ceptibility exponent y. Actually, ¥ and v are related by
the scaling law y =v(2—7), and since 2—n=o0 at least
up to order [14] 0(6*) and perhaps to all orders of 6, the
combination ¥ /v that is needed below in the finite-size
scaling of the magnetization fluctuations, {M?2), is “ex-
actly” known to be ¥y /v=0=1.5. The other exponent
that appears in (M?) is 1/v which is calculated from
v=y /o using the series for y given explicitly [14] to or-
der 6%. The value 1/v=0.95 is, of course, less accurate
than the value of ¥ /v. A more detailed comparison of
critical properties involves not only the critical exponents
but the scaling functions as well. Thus we also compare
the finite-size scaling functions for ( M2) of the equilibri-
um and nonequilibrium models. Since no analytical re-
sults are available for (M?), except its asymptotics
characterized by the critical exponents, we calculated
({M?) by MC simulations.

III. MONTE CARLO SIMULATIONS

For both the flip-and-exchange and the long-range Is-
ing model, we simulated systems with linear sizes in the
range L =11-41. The limit on the maximum system size
we can investigate comes from the presence of long-range
interactions. A MC step/spin for a long-range Ising
model involves O(L?) operations and, consequently, a
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MC step takes O(L*) operations. An extra difficulty is
the critical slowing down. Cluster algorithms [17] are
not efficient for long-range systems and, near the critical
point, the relaxation time in a Metropolis algorithm is ex-
pected to scale with system size at least as L2, Thus the
number of operations needed to gather reliable data on
the critical properties scales with L as LS With our
present facilities, this high power of L limits us to consid-
ering systems with L <45.

The simulations of both the flip-and-exchange and the
long-range model were carried out following the same
steps. First, the time evolution of the magnetization and
of the energy (nearest-neighbor correlations in case of
flip-and-exchange model) were monitored and a rough es-
timate of the relaxation time was obtained. Then the
steady-state value of the magnetization fluctuations
(M?) and of (M*) was measured as a function of T (the
control parameter for the flip-and-exchange model is the
spin-flip temperature that is called from now on as the
temperature even though the thermodynamic tempera-
ture has no well-defined meaning in this case). Next we
determined the critical temperature 7, by plotting
U(T)=1—(M*) /(3(M?)?) (Figs. 1 and 2). In the limit
of L —»o, one has [18] U(T<T,)=2%, U(T>T,)=0,
and U(T,)=U* with 0<U* <2. Thus curves of U(T)
for various finite L-s are expected to intersect at T=T,
and U=~U*. This indeed happens as can be seen from
Figs. 1 and 2, and we can get rather accurate estimates of
T, for both the flip-and-exchange model, 7, =2.60+0.04
(in units of J) and the long-range Ising model
T.=5.58%0.04 in units of J, (the length measured in
units of the lattice constant).

Once we had an estimate of T, we analyzed the {(M?)
data by assuming that, near T=T,, {M?) obeyed finite-
size scaling [2,19],

(M?)=L?>""""® (eL'"), (6
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FIG. 1. Estimates of the critical temperature 7, from the in-
tersections of U(T)=1—{(M*) /(3{(M?*)?) curves for systems of
varying linear sizes (L is measured in units of the lattice con-
stant). The data are for the spin-and-exchange model with the
temperature measured in units of the spin-flip coupling J.

Curves are only meant as guides to the eyes.
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FIG. 2. The same as Fig. 1 but for the long-range Ising mod-
el. The temperature is measured in units of the coupling con-
stant Jj.

where €=|T—T,|T, and the two branches of the scaling
function, @ and ®_, describe the ordered (T <T,) and
disordered (T > T,) phases, respectively. We used ¥ and
v as fitting parameters and determined their values by
best collapse of data when (M?2)/L2"7/¥ was plotted
against eL!/". Figure 3 shows the resulting scaling plot
for the flip-and-exchange model when y /v=1.50, and
1/v=1.12 was chosen. One can see an excellent data
collapse over two decades of the scaling variable eL /.
No perceptible decline in the quality of scaling can be ob-
served if the exponents are varied within the intervals

J:T =1.50+0.05 %)
and
v=1.124+0.10 . (8)
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FIG. 3. Finite-size scaling of the magnetization fluctuations
(M?) in the steady state of the flip-and-exchange model. The
linear size of the square lattice is L and the deviations from the
critical point are given by €=|T,/—T|/T,. The collapse of
data was achieved by using ¥ /v=1.5,and 1/v=1.12.
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FIG. 4. The same as Fig. 3 but for the long-range Ising mod-
el. Scaling is observed for the same exponent values (y /v=1.5,
and 1/v=1.12) as in Fig. 3.

The above value for y /v is in agreement with the exact
renormalization-group results y/v=1.5 for the long-
range Ising model and the result for 1/v=1.12+0.10 is
also consistent with the second-order renormalization-
group expansion (1/v=0.96). The difference between
the MC and the renormalization-group values of 1/v
may arise because an expansion to second order may well
carry an error of 20%. Also, the MC estimates may be

biased by systematic errors that are not included in the

statistical error estimates.

In order to make the case of equal exponents more con-
vincing, we made a finite-size scaling plot for {(M?) of
the long-range Ising model (Fig. 4). Using the same ex-
ponents as in the case of the flip-and-exchange model
(y/v=1.5 and 1/v=1.12), we found again very good
data collapse. Deterioration of the collapse was observed
if the exponents values were taken out of the intervals
given by Egs. (7) and (8).

It is interesting that not only the critical exponents are
equal but also the scaling functions seem to be the same
in the two systems. Figure 5 shows the result of superpo-
sition of the (M?) data sets (Figs. 3 and 4). On this
graph, we used two constants, A; and A,, to relate the
scales of € and of (M?) in the two systems (i.e., A,€ and
A,{ M?) is plotted instead of € and {M?) in case of the
long-range Ising model). Note that scaling by A, and A,
causes only a uniform shift of the curves but does not
affect the shape of the scaling function. As can be seen
from Fig. 5 where we used A, =A,=0.905, the overlap of
the high-temperature (lower) branches of the scaling
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FIG. 5. Superposition of the scaling plots (Figs. 3 and 4) of
(M?). The scales of € and {M?) are unchanged for the flip-
and-exchange model (0 ). However, all € and { M?) values were
multiplied by A, =2A,=0.905 for the long-range Ising model (O).
Note that these multiplications do not change the shape of the
scaling function on the log-log plot. They just produce a uni-
form shift of the function.

functions is excellent. The quality of overlap is worse for
the low-temperature (upper) branches but we can still ob-
serve overlap within the simulation errors (the statistical
error of the data points is of the order of the size of the
symbols on the figure).

We believe that the results for the critical exponents
and for the scaling functions, taken together, allow us the
conclusion that the universal features of the order-
parameter fluctuations in the two models are identical.
This conclusion then leads to our final results: Lévy-
flight exchanges of dimension o =1.5 combined with spin
flips satisfying detailed balance for the nearest-neighbor
Ising model generate effective interactions of the form
Veg(r)~r %3 This result is in accord with the sugges-
tion that, in general, Lévy-flight exchanges of dimension
o generate an effective potential of the form
Viry~r—27°,
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